Re-Engineering to a "Green" Data Center, with Measurable ROI

www.42U.com

Alan Mamane CEO and Founder

Agenda

- Data Center Energy Trends
- Benchmarking Efficiency
- Systematic Approach to Improve Energy Efficiency
- Best Practices

Data Center Energy Consumption

- Energy doubled from 2000 to 2006
- Projected to double again by 2011
- 61 billion kWh in 2006,
 100 billion kWh by 2011
- \$4.5 billion in 2006,
 \$7.5 billion by 2011

Source: EPA, Report to Congress on Server and Data Center Energy Efficiency

Energy Consumption Trends

- Data center energy costs to increase 40%
 - Source: EPA, Report to Congress
- 42% of data center managers expect to run out of power capacity within 24 months
 - Source: Uptime Institute
- 39% of data centers managers expect to run out of cooling capacity within 24 months
 - Source: Uptime Institute
- "Power is expected to be 30% of IT budget within 2 years"
 - Source: Gartner Group
- "Greater regulatory compliance is here to stay."
 - Source: Gartner Group

Data Center Market Drivers

Density Implications

Worldwide Cost to Power and Cool Server Installed Base, 1996-2010

Source: IDC, 2007

The Environmental Perspective

A server generates as much CO₂

Server (usually on 24x7) 440 Watt Server 3,942 kWh/year 5.3 Tons of CO₂

Auto Travel

Toyota Camry 15,000 miles/year 5.3 Tons of CO₂

Source: Sun Microsystems

Green versus \$\$\$

- IT Budgets are down in 2009
 - Need to do more with less
- A systematic approach to Efficiency
 - Start with "Low hanging Fruit" for a quick ROI
 - Improving Cooling & Air Flow yields dramatic results
 - Rebates available from some energy companies

PUE / DCiE

Power Usage Effectiveness (PUE) <u>Total Facility Power (kW)</u> IT Equipment Power (kW)

PUE DCiE

- 3.0 0.33 Very Inefficient
- 2.5 0.40 Inefficient
- 2.0 0.50 Average
- 1.5 0.67 Efficient
- 1.2 0.83 Very Efficient

Power Usage Effectiveness (PUE) Data Center infrastructure Efficiency (DCiE)

Improving Energy Utilization

Goal: Reduce overall power, especially non-IT power

Calculating PUE

- What to measure and how often?
- Importance of consistency
- How to measure
 - Manual readings of BMS, UPS, PDUs
 - Instrumentation
 - Real-time measurement & Real-time PUE
 - Wireless meters and sensors
 - Branch circuit monitoring
 - Power usage software

Efficiency Benchmarking

• With funding from PG&E and others, Lawrence Berkeley National Laboratory conducted benchmark studies of 22 data centers:

- Data Center energy Productivity (DCeP)
- PUE controversies
 - "PUE Wars", "PUE Marketing", "PUE/DCiE vs. CADE"

Systematic Approach to Improve Efficiency

Low-cost/No-cost Best Practices

- Basic Airflow Management
 - Tune Hot Aisles/Cold Aisles
 - Seal Floor leaks
 - Tile arrangement
 - Cable obstructions
 - Close rack openings
- Reduce excess cooling
- Retire unused servers
 - Eliminate unused IT equipment

Measure Environmental Conditions

Hot Aisles / Cold Aisles

- Cold Air directed to cold aisles
- Hot Air exhausted from hot aisles
- Bypass Airflow / Air Mixing should be monitored and tuned
- Limit obstructions and seal openings within rows, floor, and racks

Eliminate Excess Cooling

Air Flow Tuning

Rack-Level Air Flow Management

- Impact of a single blanking panel
- Consistent results for
 - Floor leaks
 - Tile arrangement
 - Cable obstructions

Middle of rack

Refresh or Remove Unused IT Equipment

- Cascading effect of power consumption
 - 1 Watt saved at server = 2.84 Watts saved source=Emerson Network
- Retire unused servers
 - "up to 30% could be turned off" source=Ken Brill
- Eliminate unused or rarely used IT equipment
 - Examples: Monitors & old KVM switches

Implement Additional Best Practices

- Cold Aisle Containment
- Hot Aisle Containment
- In-Rack Cooling
- Consolidate Servers
- Virtualization
- Analyze TCO when buying new equipment

Improve Air Flow Management

Air flow issues:

- Hot spots
 - Potential server downtime
- Cooling systems need to work harder than necessary
 - Excess power consumption
 - Additional energy costs

Cold Aisle Containment

- Cold Air directed where needed
- No need to reconfigure existing rack layout, unless use In-Row cooling
- Relatively inexpensive and easy to install
- Care needed with Fire Suppression systems & change to Air Pressure
- CAC with VFDs can reduce fan energy use by 75% (source = LBNL)

Hot Aisle Containment

- Hot air exhausted from data center or cooled with In-Row cooling
- Prevents exhaust air from mixing with cool air
- Can operate on raised or non-raised floors
- Some layout reconfiguration for existing facilities
- More expensive than CAC and more work with ducting and installation

Importance of Consolidation & IT Efficiency

Consider other Efficiency Practices

- Air-side Economizers
- Water-side Economizers
- Raising Supply Temperatures
- Close-Coupled Liquid Cooling
- Data Center Thermal Zones
- Data Center Containers/Pods

Economizers

- Air-side Economizers
 - Free Air save energy by using outside air
 - Hot air vented directly outside
 - Can be effective 24/7
 - Consider Humidity & Air Quality / Contamination
 - Free Cooling Map
- Water-side Economizers
 - No air contamination issues
 - Minimal impact on data center space

Close-Coupled Cooling

- Bringing the heat transfer closer to the load
- Immediate hot air capture, better heat exchange across the cooling coil- improved operational efficiency of AC unit
- Cooling the load instead of cooling the room-less energy required to move air to the intended load and return it
- Water Cooling is 3500 times more effective than air

Data Center Containers / Pods

- Rapid deployment pre-engineered, pre-fabricated
 - No energy intensive construction projects
- Reduces waste of packing material, and CO2 needed to transport those servers from point A to point B
- Right-Sizing of Real Estate
- Right-Sizing of Cooling

Engagement Life Cycle Example

- Engagement Design
- Begin Measurements
 - Debrief On On-Going Process
- Collected Data Available
- Analysis and Report Generation
- Deliver Findings & Recommendations
- Implement Recommendations
- Measure & Improve
- Repeat process

Kickoff Meeting		Monitor Installation		Report	
Day 1	1-2 Week SOW Preparation	2-4 Week Monitoring	Analysis	Review	Recommendation Implementation
	Facilities Walk-Through		Monitoring Wrap-Up		Review Meeting

www.42U.com